All Issue

2023 Vol.55, Issue 6 Preview Page

Research Article

30 December 2023. pp. 130-137
Abstract
References
1
Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., and Yano, H., Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS, Biomacromolecules 8(6):1973-1978 (2007). 10.1021/bm070113b17458936
2
Aulin, C., Gällstedt, M., and Lindström, T., Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose 17(3):559-574 (2010). 10.1007/s10570-009-9393-y
3
Aulin, C., Salazar-Alvarez, G., and Lindström, T., High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability, Nanoscale 4(20):6622-6628 (2012). 10.1039/c2nr31726e22976562
4
Honorato, C., Kumar, V., Liu, J., Koivula, H., Xu, C., and Toivakka, M., Transparent nanocellulose-pigment composite films, Journal of Materials Science 50(22):7343-7352 (2015). 10.1007/s10853-015-9291-7
5
Kumar, V., Bollström, R., Yang, A., Chen, Q., Chen, G., Salminen, P., Bousfield, D., and Toivakka, M., Comparison of nano-and microfibrillated cellulose films, Cellulose 21(5):3443-3456 (2014). 10.1007/s10570-014-0357-5
6
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A., Nanocelluloses: a new family of nature‐based materials, Angewandte Chemie International Edition 50(24):5438-5466 (2011). 10.1002/anie.20100127321598362
7
Salas, C., Nypelö, T., Rodriguez-Abreu, C., Carrillo, C., and Rojas, O. J., Nanocellulose properties and applications in colloids and interfaces, Current Opinion in Colloid and Interface Science 19(5):383-396 (2014). 10.1016/j.cocis.2014.10.003
8
Missoum, K., Belgacem, M. N., and Bras, J., Nanofibrillated cellulose surface modification: a review, Materials 6(5):1745-1766 (2013). 10.3390/ma605174528809240PMC5452503
9
Nechyporchuk, O., Pignon, F., and Belgacem, M. N., Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process, Journal of Material Science 50:531-541 (2015). 10.1007/s10853-014-8609-1
10
Cervin, N. T. andersson, L., Ng, J. B. S., Olin, P., Bergström, L., and Wågberg, L., Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose, Biomacromolecules 14(2):503-511 (2013). 10.1021/bm301755u23252421
11
Won, J. M., Effects of refining condition on the specific energy consumption and physical properties of liner, Journal of Korea TAPPI 36(2):17-23 (2004).
12
Brodin, F. W., Gregersen, Ø. W., and Syverud, K., Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material - A review, Nordic Pulp and Paper Research Journal 29(1):156-166 (2014). 10.3183/npprj-2014-29-01-p156-166
13
Chaker, A. and Boufi, S., Cationic nanofibrillar cellulose with high antibacterial properties, Carbohydrate Polymers 131:224-232 (2015). 10.1016/j.carbpol.2015.06.00326256179
14
Song, Y., Zhang, J., Gan, W., Zhou, J., and Zhang, L., Flocculation properties and antimicrobial activities of quaternized celluloses synthesized in NaOH/urea aqueous solution, Industrial and Engineering Chemistry Research 49(3):1242-1246 (2010). 10.1021/ie9015057
15
Sehaqui, H., Mautner, A., de Larraya, U. P., Pfenninger, N., Tingaut, P., and Zimmermann, T., Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties, Carbohydrate Polymers 135:334-340 (2016). 10.1016/j.carbpol.2015.08.09126453885
16
Thomas, B., Raj, M. C., Joy, J., Moores, A., Drisko, G. L., and Sanchez, C., Nanocellulose, a versatile green platform: from biosources to materials and their applications, Chemical Reviews 118(24):11575-11625 (2018). 10.1021/acs.chemrev.7b0062730403346
17
Littunen, K., de Castro, J. S., Samoylenko, A., Xu, Q., Quaggin, S., Vainio, S., and Seppala, J., Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties, European Polymer Journal 75:116-124 (2016). 10.1016/j.eurpolymj.2015.12.008
18
Bildik, A. E., Hubbe, M. A., and Gule, M. E., Neutral/alkaline sizing of paper with fortified, saponified wood rosin premixed with alum and retained using cationic polymer, Appita Journal 72(1):42-51 (2019).
19
Gess, J. M., The sizing of paper with rosin and alum at acid pHs in: Roberts, J. C. (ed.), Paper Chemistry Ch. 8, Springer, Netherlands pp. 120-139 (1996). 10.1007/978-94-011-0605-4_8
20
Kangas, H., Lahtinen, P., Sneck, A., Saariaho, A. M., Laitinen, O., and Hellén, E. Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods, Nordic Pulp and Paper Research Journal 29(1):129-143 (2014). 10.3183/npprj-2014-29-01-p129-143
21
Song, W. Y., Juhn, S., Gwak, J. H., Shin, S. J., and Seong, H. A., Width and Length Measurement of Cellulose Nanofibril by Nanoparticle Analyzer: Comparison with TEM Image Analysis, Journal of Korea TAPPI 51(1):121-127 (2019). 10.7584/JKTAPPI.2019.02.51.1.121
22
Fraschini, C., Chauve, G., Le Berre, J. F., Ellis, S., Méthot, M., O'Connor, B., and Bouchard, J. Critical discussion of light scattering and microscopy techniques for CNC particle sizing, Nordic Pulp and Paper Research Journal 29(1):31-40 (2014). 10.3183/npprj-2014-29-01-p031-040
23
Xu, J., Wang, P., Yuan, B., and Zhang, H. Rheology of cellulose nanocrystal and nanofibril suspensions, Carbohydrate Polymers 324:121527 (2024). 10.1016/j.carbpol.2023.12152737985059
24
Zimmermann, M. V., Borsoi, C., Lavoratti, A., Zanini, M., Zattera, A. J., and Santana, R. M. Drying techniques applied to cellulose nanofibers, Journal of Reinforced Plastics and Composites 35(8):682-697 (2016). 10.1177/0731684415626286
25
Littunen, K., de Castro, J. S., Samoylenko, A., Xu, Q., Quaggin, S., Vainio, S., and Seppala, J., Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties, European Polymer Journal 75:116-124 (2016). 10.1016/j.eurpolymj.2015.12.008
26
Im, W., Park, S. Y., Yook, S., Goo, S., Lee, H. L., and Youn, H. J., Cationization of pulp fibers as pretreatment and preparation of cationic cellulose nanofibrils, Journal of Korea TAPPI 52(1):45-54 (2020). 10.7584/JKTAPPI.2020.02.52.1.45
27
Song, W. Y., Juhn, S., and Shin, S. J., Characteristics of cellulose nanofibril produced after quaternary amine pretreatment, Journal of Korea TAPPI 50(5):107-113 (2018). 10.7584/JKTAPPI.2018.10.50.5.107
28
Isogai, T., Saito, T., and Isogai, A., Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation, Cellulose 18(2):421-431 (2011). 10.1007/s10570-010-9484-9
29
Zaman, M., Xiao, H., Chibante, F., and Ni, Y., Synthesis and characterization of cationically modified nanocrystalline cellulose, Carbohydrate Polymers 89(1):163-170 (2012). 10.1016/j.carbpol.2012.02.06624750619
30
Sehaqui, H., Zhou, Q., Ikkala, O., and Berglund, L. A. Strong and tough cellulose nanopaper with high specific surface area and porosity, Biomacromolecules 12(10):3638-3644. (2011). 10.1021/bm200890721888417
31
Ye, Y., Oguzlu, H., Zhu, J., Zhu, P., Yang, P., Zhu, Y., and Jiang, F. Ultrastretchable ionogel with extreme environmental resilience through controlled hydration interactions, Advanced Functional Materials 33(2):2209787 (2023). 10.1002/adfm.202209787
32
Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolaine, J., Laine, J., Larsson, P. T., Ikkala, O., and Lindström, T., Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules 8(6):1934-1941 (2007). 10.1021/bm061215p17474776
33
Song, W. Y., Jeong, S. B., Juhn, S. Y., and Shin, S. J., Fibrillation characteristics of cellulose nanofibrils with water retention value method, Journal of Korea TAPPI 51(1):128-133 (2019). 10.7584/JKTAPPI.2019.02.51.1.128
34
Park, J. J., Choi, K. H., and Cho, B. U., Effects of grinding-homogenizing treatments on the characteristics of MFC, Journal of Korea TAPPI 50(2):60-67 (2018). 10.7584/JKTAPPI.2018.04.50.2.60
35
Rahmini, Juhn, S., Lee, K. H., and Shin, S.-J., Impact of electrolytes on the rheology of TEMPO-oxidized cellulose nanofibril, Journal of Korea TAPPI 52(5):5-14 (2020). 10.7584/JKTAPPI.2020.10.52.5.5
36
Riyajan, S. and Nuim, J., Interaction of Green polymer blend of modified sodium alginate and carboxylmethyl cellulose encapsulation of turmeric extract, International Journal of Polymer Science 2013:364253 (2013). 10.1155/2013/364253
37
Cao, X. L., Lim, S. K., Song, W. Y., Shin, S. J., and Seong, H. A., Impact of carboxymethylation pretreatment on bleached rice hull nanofiber by grinding, Journal of Korea TAPPI 53(6):46-156 (2021). 10.7584/JKTAPPI.2021.12.53.6.146
38
Jiang, J., Chen, H., Liu, L., Yu, J., Fan, Y., Saito, T., and Isogai, A., Influence of chemical and enzymatic TEMPO-mediated oxidation on chemical structure and nanofibrillation of lignocellulose, ACS Sustainable Chemistry and Engineering 8(37):14198-14206 (2020). 10.1021/acssuschemeng.0c05291
39
Feng, X. J. and Lei Jiang., Design and creation of superwetting/antiwetting surfaces, Advanced Materials 18.23:3063-3078 (2006). 10.1002/adma.200501961
40
Goo, S., Park, H., Yook, S., Park, S. Y., and Youn, H. J., Preparation of hydrophobized cellulose nanofibril film with high strength using AKD, Journal of Korea TAPPI 50(6):34-41 (2018). 10.7584/JKTAPPI.2018.12.50.6.34
Information
  • Publisher :Korea Technical Association of The Pulp and Paper Industry
  • Publisher(Ko) :한국펄프종이공학회
  • Journal Title :Journal of Korea TAPPI
  • Journal Title(Ko) :펄프종이기술
  • Volume : 55
  • No :6
  • Pages :130-137
  • Received Date : 2023-11-21
  • Revised Date : 2023-12-15
  • Accepted Date : 2023-12-17